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SUMMARY 

Coupled, three-dimensional, time-dependent, incompressible flows in a differentially heated, rotating annulus are 
simulated using a parallel implementation of the Galerkin finite element method on the Connection Machine 5 
(CM-5) supercomputer. The development of baroclinic annulus waves is computed and found to be consistent with 
previous experimental reseults. The implementation of a repeated spectral bisection element-partitioning technique 
significantly increases the computation speed over a strategy which randomly maps elements to processors, 
yielding sustained calculation rates of 8.1 GFLOPS on 5 12 processors of the CM-5. 
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1. INTRODUCTION 

Massively parallel computing platforms and algorithms hold great promise for analysing a spectrum of 
issues involving fluid mechanics and transport phenomena, especially in systems where three- 
dimensional and time-dependent behaviours predominate. In this paper we present the results from a 
benchmark calculation of a classical fluid flow, baroclinic annulus waves, which is representative of the 
coupled flows found in many material-processing systems of interest to us.' Our specific interests 
centre on processes employed to produce advanced materials such as large, single crystals for photonic 
and electronic devices2-' and ceramic Such processes are characterized by complex 
geometries which are often time-dependent, coupled incompressible flows, heat and mass transfer, 
chemical reaction and phase change. 

An excellent example of a material-processing system which exhibits three-dimensional flows is the 
Czochralski method for the growth of large, single crystals. This technique is employed to manufacture 
most of the world's supply of single-crystal silicon as well as many other technologically important 
crystals such as gallium arsenide and various refractory oxides.* In this method a single crystal is 
pulled from the surface of a molten material contained in a crucible. This melt is subjected to buoyant 
forces due to temperature gradients through the system and to rotational forces from the crystal, which 
is slowly spun while being pulled. Numerous researchers have experimentally observed three- 
dimensional flow structures in real and model Czochralski rnelt~."~ 

Towards our goal of simulating coupled, three-dimensional, transient flows in material-processing 
systems, we choose a benchmark simulation of the classical system of a fluid-filled annulus which is 
rotated and differentially heated.'"I6 This system has long been employed experimentally to study the 
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essential physical attributes of large-scale atmospheric cir~ulation'~ and has also been employed to 
study non-linear structures in flows and the onset of chaotic behaviour in fluid systems.I8 This simple 
system exhibits a wide range of complicated flows which arise from the non-linear interactions 
between the Coriolis force induced by system rotation and the buoyancy induced by lateral temperature 
gradients. For low rotation rates the flows are axisymmetric; however, at a critical rotation rate these 
flows undergo a transition caused by the baroclinic instability" to form a pattern of annular wave-like 
structures. At even higher rotation rates and temperature gradients these structures can vacillate 
periodically in time or can form irregular, chaotic patterns. 

While this system is rich in its display of complicated fluid dynamical phenomena, we again 
emphasize its employment here primarily as a benchmark for our code. Previous numerical simulations 
of flow in a rotating, differentially heated annulus include the two-dimensional, finite difference 
calculations of Williams.20*2' Williams extended his study to the three-dimensional flow structure of 
azimuthal wave number five using a finite difference scheme.22 More recent attempts at the calculation 
of the three-dimensional flows in this system include the mixed spectral and finite difference approach 
of Q ~ o n ~ ~  and the pseudospectral algorithm developed by Le QuCrC and P C ~ h e u x . ~ ~  We approach the 
simulation of this system using a massively parallel implementation of the Galerkin finite element 
method. Our initial efforts in developing this algorithm were reported in Reference 25; subsequent 
code modifications and the performance of this approach in the calculation of baroclinic annulus waves 
are reported in the following sections. 

2. PROBLEM FORMULATION 

We consider a differentially heated, fluid-filled annulus of rectangular cross-section which rotates 
around its symmetric axis; see Figure 1. We consider a Cartesian co-ordinate system fixed to the 
symmetric axis of the system and write the dimensionless, rotational form'5 of the Navier-Stokes 
equation with the Boussinesq approximation for an incompressible fluid, along with the energy balance 
equation, as 

av 
- + v -  V v  - 2PrRe(vyex - v,e,) = V * u  - GrP?FrT(xe, + yey) + GrP?Te,, 
at 

The stress tensor u is defined as 

v - v  = 0, 

aT 
- + V . V T  = V ~ T  
at (3) 

The dimensionless variables are defined as follows: v is the flow velocity (scaled by alR), T is the 
temperature (scaled by the temperature difference AT), t is the time (scaled by R2/a), P is the pressure 
(scaled by pa2/R2), ex, e,, and e, are unit vectors along the axes x, y and z respectively, I is the identity 
tensor and the superscript T denotes the transpose operation. The radius of the outer cylindrical wall, R 
is chosen as the characteristic length scale and the thermal difisivity a is defined as a = WpC,, where 
k is the thermal conductivity, p is the density and C, is the specific heat of the fluid. The dimensionless 
Grashof number (Gr), rotational Reynolds number (Re), Prandtl number (Pr) and Froude number (Fr) 
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Figure 1. Geometry considered in this study, consisting of a fluid-filled annulus of rectangular cross-section which is laterally 
heated and rotated around its symmetric axis 

are defined as 

p2R3gBAT 
Gr = 

P2 

pR2Q 
P 

R e = - - - ,  

P r = - ,  P G  
k 

Q2R 
F r = - ,  

g 

where p is the fluid viscosity, g is the gravitational acceleration, B is the thermal expansion coefficient 
and R is the angular velocity of annulus rotation. 

No-slip boundary conditions are applied for the flow field along all surfaces. The warm outer 
cylindrical wall and the cool inner wall are held at constant temperatures; their difference is denoted by 
AT. The upper and lower surfaces of the annulus are taken to be adiabatic. 

3. METHODOLOGY 

3.1.  Numerical approach 

The Galerkin finite element method26 is used to spatially discretize the above equations. Since we 
are interested in computing flows of only moderate intensity, stabilization techniques for the advection 
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terms are not employed. We employ a standard mixed interpolation scheme27 in which the velocity and 
temperature fields are expressed as linear combinations of Lagrangian triquadratic polynomials Qi with 
27 nodes per hexahedral element while the pressure is approximated by a s u m  of discontinuous linear 
basis functions ri with four degrees of freedom per element: 

where N is the total number of nodes and Np is the number of pressure unknowns. 
We apply the Galerkin procedure in the standard manner to produce weak-form weighted residual 

equations. Boundary conditions are invoked using routine finite element proceduresF6 The weighted 
residual equations are evaluated numerically using 27-point Gauss quadrature on each element to yield 
a large set of differential-algebraic equations which we denote as 

where M is the mass matrix, q is the vector of time-dependent unknowns comprising the complete set 
of velocity temperature and pressure interpolants and F is the right-hand side resulting from the spatial 
discretization of the original partial differential equations. More details of this formulation are available 
in Reference 28. 

Equation (1 1) is temporally discretized using the backward Euler method, which yields the non- 
linear equation set 

where the superscripts denote the time step and At is the step size. This set of equations is then solved 
using the iterative Newton-Raphson method, resulting in the solution of large linear equation sets at 
each time step. A constant time step size is employed for the calculations presented here. 

3.2. Parallel implementation 

The algorithm described above is implemented on the Thinking Machines Corporation Connection 
Machine 5 (CM-5), a distributed memory, multiple-processor supercomputer. For the sake of brevity 
we present only the most essential aspects of the parallel implementation here. Interested readers 
should consult Reference 25 for more details. 

The major characteristics of the CM-5 are its large distributed memory and many processors. In 
order to effectively exploit these features, individual elements are mapped to processors and the 
element-level components of the residual equations and Jacobian matrix (which arise from the 
Newton-Raphson iterations performed at every time step) are calculated concurrently. When these 
computations are complete, the GMRES (generalized minimal residual) iterative scheme of Saad and 
Schuld9 is used with diagonal preconditioning to solve the linear algebraic system. We have 
employed 375 GMRES iterations for each linear equation set solution of the Newton iteration (15 
restart loops and a Krylov subspace dimension of 25). To take advantage of the local data structure 
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Plate 1. Transient, three-dimensional calculations of the development of a baroclinic annulus wave. The 
temperature field is represented using a top view, cut through the z = lI2 H plane, and a side view through 
the 0 = 0 plane. The colour map for the temperature field is shown in lieu of the side view in case (d). (a) The 
initial condition is steady, axisymmetric convection in the absence of rotation. (b) The development and 
growth of annular vortices occurs shortly after the introduction of system rotation. (c) At long times the 
system exhibits fully developed baroclinic annulus waves. (d) At even longer times the structure of the 

annular vortices continues to evolve 



Plate 1. ( c ) ,  (d) For description see over 
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described above, the matrix-vector multiplications of GMRES are conducted with element-level rather 
&an global residual and Jacobian matrix elements. Therefore only the resulting update vectors need to 
be mapped to the global level.25 This general approach has been used with great effectiveness by 
Tezduyar and c o - w ~ r k e r s ~ ~ ~ ~  and Johan et in similar massively parallel implementations of the 
finite element method. 

The cost of communicating between the local and global levels (scattering and gathering) is a 
function of the positions of the elements with respect to each other on the processors. Our initial 
approach assigned the elements to processors in a completely arbitrary manner?5 In the calculations 
performed here, we endeavour to reduce the communications overhead by partitioning the elements 
into groups and selectively mapping them to the processors. This task is fulfilled using a recursive 
spectral bisection p r ~ c e d u r e ~ ~ . ~ ~  which is conveniently implemented through the routine 'partition-- 
mesh' of the CM-5 scientific library (CMSSL). The performance increase as a result of this element 
partitioning will be reported in Section 4.2. 

4. RESULTS 

A schematic diagram of the system geometry is shown in Figure 1 .  We choose conditions to mimic the 
experimental apparatus employed by Koschmieder.'6 The radius of the outer cylindrical wall is set to 
be 5 cm, with a gap thickness of 2.5 cm. The height of the annulus is 10 cm. The thermophysical 
properties of water are employed and a temperature difference of 10°C is applied across the gap. The 
rotation rate is set to be R = 2.5 rad s- '. The dimensionless parameters for these calculations are then 
Gr=2-54  x 10 , Re=6-25 x lo3, Pr=6.96  and Fr=3.18 x Figure 2 shows the finite 
element mesh employed for our computations, which consists of 20,480 triquadratic elements with a 
total of 774,656 mathematical unknowns. 

6 

4. I .  Baroclinic annulus waves 

A steady flow calculated for a system with no rotation is employed as the initial condition in our 
system. The temperature field corresponding to this flow is shown in Plate l(a). The flow is 

Top View Side View 

Figure 2. Top and side views of finite element mesh used for computations described in Section 4. The mesh consists of 20,480 
triquadratic elements with a total of 774,656 mathematical unknowns 
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axisymmetric and dnven solely by buoyancy. Warm fluid rises near the outer wall and descends along 
the cool inner wall. The distorted temperature field shown in the side view clearly indicates the 
convective nature of the flow. 

The simple axisymmetric flow of Plate l(a) becomes unstable to azimuthal perturbations and gives 
way to a non-axisymmetric wavy pattern soon after system rotation is introduced. This developing 
structure is seen in Plate l(b) and exhibits a dominant azimuthal wave number of four. The distorted 
temperature field seen from the top view has a distinct fourfold symmetry. 

At much longer times the hlly developed wave structure becomes evident; see Plate l(c). Eight flow 
cells (four clockwise and four counterclockwise) are aligned vertically and rotate at nearly the same 
rate as the container (they are nearly stationary in the rotating frame of reference of the calculation). 
The flows across the annulus are now much weaker than the corresponding flows of the axisymmetric 
case shown in Plate l(a), as indicated by the less distorted isotherms in the side view. 

The flow continues to evolve, with the annular vortices strengthening, as shown in Plate l(d). 
Although it is difficult to discern solely from the temperature field, a more detailed analysis of this flow 
reveals significant changes in the shapes of the annular vortices; the four vortices with clockwise 
circulation appear to be pinching into eight flow cells. Continued temporal evolution of this flow will 
likely result in significant changes in its spatial and temporal character; quasi-periodic and chaotic flow 
regimes have been observed in experiments.18 

KoschmiederI6 observed very similar flows with azimuthal wave number four in his experiments 
under the same conditions as employed in our calculations. Such agreement corroborates the veracity 
of our algorithm and its implementation. While other three-dimensional structures have been observed 
under different  condition^,'"^^ we have not actively pursued the computation of these flows. 

4.2. Code performance 

An analysis of code performance is presented in Table I. All calculations were performed using 64 
bit precision arithmetic on 5 12 processors of the CM-5 of the Army High Performance Computing 
Research Center at the University of Minnesota. Speeds are reported in GFLOPS (billions of floating 
point operations per second), which were calculated from the elapsed time and the number of floating 
point operations indicated in the assembly language listing generated by the compiler. For the 
performance test conducted here, a larger system of 32,768 triquadratic elements and 1,212,672 total 
degrees of freedom was employed in order to directly compare with our previous implementation. 

TabIe I. Performance results obtained with 512 processors of CM-5 for one Newton-Raphson iteration during 
coupled, incompressible flow calculations described in text. Results are indicated for implementations without 
(w/o P.) and with (wP.) element partitioning* 

Programme section Floating point Time (s) Speed (GFLOPS) 
operations 

WJO r? W P .  WIOP. WP. 

Evaluation of residual and Jacobian 118 x lo9 12.4 12.4 9.5 9.5 
GMRES solution (total) 330 x lo9 62.0 42-8 5.3 7-7 

375 matrix-vector multiplications 309 x 109 20.5 20-5 15.1 15.1 
375 scatters+375 gathers 0 35.5 16.3 0 0 

Sustained rate 448 x lo9 74.4 55.2 6.0 8.1 

*These results were obtained using a beta test version of the CM-5 software and consequently are not necessarily representative 
of the performance of the full version of this software. 
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The calculations performed here feature the element-partitioning scheme described above to reduce 
communications overhead; Table I compares current code performance results with those of our prior 
implementation without element partiti~ning.~’ The speeds of residual and Jacobian evaluation 
(9.5 GFLOPS) and matrix-vector multiplications within GMRES (1 5.1 GFLOPS) are not affected by 
element partitioning. However, the current implementation more than doubles the communication 
speed between local and global data structures (through the 375 scatters and gathers during a GMRES 
solution), thereby more than halving the idle time of the processors. As a result, the sustained rate of 
the calculations is increased from 6.0 to 8.1 GFLOPS. 

5. CONCLUSIONS 

The coupled, three-dimensional, time-dependent, incompressible flows in a laterally heated, rotating 
annulus are successfully computed using a parallel implementation of the Galerkin finite element 
method. The evolution of baroclinic annulus waves with a fourfold azimuthal structure is kmulated 
and found to be consistent with experimental results. 

The newly implemented element-partitioning technique, which selectively maps elements to 
processors using a recursive spectral bisection procedure, more than doubles the speed of 
communications between local and global data structures and results in a sustained rate of 
8.1 GFLOPS on 512 processors of the CM-5. This represents a substantial (approximately 35%) 
increase in performance over our previous implementation2’ which randomly mapped elements to 
processors. Interestingly, the relative increase in sustained calculation rate obtained here is less than 
that obtained by others using the same element-partitioning technique; see Reference 34. This is a 
consequence of our use of triquadratic elements rather than trilinear elements used by others. More 
degrees of freedom are contained within the higher-order elements, which results in a more localized 
elemental data set. This by itself reduces the number and length of communication paths needed 
between the elemental and global data structures. The communications overhead reduction achieved by 
partitioning is therefore comparatively less important for our implementation using higher-order 
elements. 

These results demonstrate the great promise for high-resolution computations of three-dimensional, 
time-dependent flows in realistic systems using massively parallel implementations of finite element 
methods. Further algorithmic development is needed, especially in improved preconditioners for use 
with GMRES in the calculation of incompressible However, these techniques are currently 
enabling significant advances in the study of realistic material-processing and will 
undoubtedly promote great advances in analysis via large-scale numerical simulation. 
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